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Abstract

We consider a mathematical context which was suggested by quantum mechanical considerations
of level dynamics. Although the situation is a general one, we restrict our attention to certain
examples of physical relevance where explicit calculations are possible. Cases whereM is the
cotangent space of some Lie group or Lie algebraQ of operators on a finite-dimensional vector
space are of particular interest. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Calculations with variables

Let us summarize the original physical discussion which was geared to describing the time
evolution of a one dimension gas of particles with positions corresponding to eigenvalues
of symmetric matrices [1–4]. This is in some sense a toy model, but is representative of an
interesting general setting.

For this Q is the space of symmetric,(n × n)-matrices with real entries and a pair
(X, Y ) ∈ Q × Q is regarded as a pointX with a velocityY . The evolution of the fictitious
gas is as simple as possible:(X, Y ) 7→ (X+tY, Y ), which corresponds tȯX = Y andẎ = 0.
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The goal is to understand the evolution of the vector of eigenvalues of the configuration
space variableXt = X + tY, which can be regarded as a point in∆+

n := {(q1, . . . , qn) ∈
R

n : q1 ≤ q2 ≤ · · · ≤ qn}. The variation of theqt ∈ ∆+
n is clearly not dynamical, but one

might hope to fitq in a higher-dimensional coordinate system which would be describable
in dynamical terms.

In this regard, it is prudent to computeX andY in a time-dependent orthonormal basis
of Rn which consists of eigenvectorse1(t), . . . , en(t) of Xt , i.e., Xtej (t) = qj (t)ej (t),
whereqt = diag(q1, . . . , qn). Definep to be the diagonal ofY in the above basis, i.e.,
pj (t) = 〈ej (t), Yej (t)〉 and the remaining variables are the entries ofY weighted with the
difference of the eigenvalueslij = (qj − qi)〈ei, Yej 〉.

One directly verifies that these variables constitute a closed system, the first part of which
is canonical. In fact (see [2]),

q̇j = pj , ṗj = −2
∑
k 6=j

ljklkj

(qj − qk)3
,

l̇mj = −
∑

k 6=m,j

lmklkj

(
1

(qm − qk)2
− 1

(qj − qk)2

)
.

Thus the variables(q, p, l) give an extended system of desired type.
In fact, if H := ‖Y‖2 is transformed to these variables, i.e.,

H(q, p, l) = 1

2

∑
j

p2
j + 1

2

∑
j 6=m

l2mj

(qm − qj )2
,

then there is a simple Poisson bracket in which this system is defined byHas its Hamiltonian:
the variables(q, p) are canonical, i.e.,{pi, pj } = δij and{pi, pj } = {qi, qj } = 0. They
commute withl and

{lαβ, lij } = 1
2(δαj lβi + δβi lαj − δβj lαi − δαi lβj ).

If one regards the variables(q, p, l) as being non-linear coordinates onS := ∆+
n × Q,

and computes the Jacobian to change back to linear variables onS and then projects onto
the eigenvalue variableq, one obtains the Gaußian orthogonal ensemble, i.e., the density∏

i<j (qi − qj ). This is an indicator of the presence of random matrix theory (RMT).

1.2. Basic goals

The above computations are quite typical in physical settings where dynamical variables
are essential ingredients. One of the goals of the present paper is to underline a more
geometric side, the role of symmetry- and momentum-coordinates.

As explained in Section 3, it is at first appropriate to discuss this in terms of a naturally
induced Poisson structure on the full quotientM/G of a symplectic manifold by a Lie group
of symplectic diffeomorphisms. In the above example,M is just the cotangent bundle of
Q, andG is SOn(R).
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The “variable point of view” above amounts to choosing a special sliceS for the quo-
tient M → M/G which involves the coordinate of interest, i.e.,q, as well as non-linear
momentum-coordinatesΩ. Another of our goals is to explain the nature of such a slice and
show how it is constructed in a more general setting. It is interesting that in other cases a
“thick slice” S is appropriate, i.e., one of higher dimension than that ofM/G.

Computing in momentum-coordinates on naturally chosen submanifolds ofS in Section
4, we give descriptions of the Poisson structures in the examples of symmetric, Hermitian
and general complex matrices. The symmetric case was carried out in [2] as in Section 1.1.
The latter cases were formally known, but not in mathematical detail (see [1,5]).

While the setsS are by no means invariant by the Hamiltonian flow, they do carry
canonical measures. In the examples considered here there are image measures arising via
orbital integration of standard invariant Gaußian measures onM (see Section 5). In all cases
considered, when computed in non-linear momentum-coordinates, this is shown to be the
uniform density onS and a change to linear coordinates and projection onto the eigenvalue
variable yield densities which verify the presence of RMT. In fact, these calculations explain
exactly why RMT is present.

2. Notation and basic structural information

In the sequelM denotes a connected manifold equipped with a Poisson structure{ , } :
E(M)×E(M) → E(M). Recall that{ , } is bilinear, alternating and that the Jacobi identity
is satisfied, i.e.,{f, {g, h}} = {{f, g}, h} + {g, {f, h}}. In order to regard{f, ·} = Vf as a
vector field onM one requires the validity of the Leibnitz-rule:{f, gh} = h{f, g}+g{f, h}.

The mapE(M) → Vect(M), f 7→ Vf , is easily shown to be local in the sense thatVf

only depends on the differential df and the Poisson structure is then defined by a linear
mapP{ , } : T ∗M → TM, df (x) 7→ Vf (x), which satisfies conditions which are equivalent
to those listed above.

If G × M → M is a smooth Lie group action, then{ , } is said to be invariant ifP{ , }
is G-equivariant, i.e.,P{ , } ◦ g = g ◦ P{ , } or equivalently{g(f ), g(h)} = g({f, h}) for all
f, h ∈ E(M) and allg ∈ G. Such invariant Poisson structures induce a Poisson structure
on E(M)G, because the bracket of two invariant functions is again invariant. In case of
confusion, we denote this by{ , }G.

Although it is not mandatory, it is of conceptual interest to associate a geometric model to
E(M)G. The first candidate is the space ofG-orbitsM/G := {Gx : x ∈ M} equipped with
the quotient topology. If theG-action is proper, i.e.,G×M → M×M, (g, x) 7→ (g(x), x) is
a proper map, thenM/G is a Hausdorff differentiable space with mild singularities occurring
in at most codimension 2. By definition(E(M)G, { , }G) is the Poisson structure onM/G.

A Hamiltonian system is a triple(M, { , }, H) with H ∈ E(M). Given such a system, one
is interested in qualitative aspects of the fieldVH or of an associated discretized version.
The first rough invariant is the subalgebraZ(H) := {f ∈ E(M) : {H, f } = 0} of constants
of motion. The name is justified by the fact thatf ∈ Z(H) if and only if VH (f ) = 0, i.e.,
f is invariant under the local 1-parameter group action associated toVH .



A. Huckleberry et al. / Journal of Geometry and Physics 37 (2001) 156–168 159

A Casimir function, which is by definition an element of the degeneracyD{ , } := {f ∈
E(M) : {H, f } = 0∀H ∈ E(M)}, is a constant of motion for every system. Of course the
constant functionsR are always contained inD{ , }. If there are no other Casimirs,D{ , } = R,
then{ , } is said to be non-degenerate. Equivalently,P{ , } defines a non-degenerate 2-form
ω ∈ E2(M) which, due to the validity of the Jacobi identity, is closed. In other words,(M, ω)

is a symplectic manifold with Hamiltonian fields being defined by df = iVf
ω = ω(Vf , ·).

We adapt the sign convention{f, h} := ω(Vh, Vf ).
The Poisson structure of a symplectic manifold is invariant with respect to a Lie group

actionG × M → M if and only if g∗ω = ω for all g ∈ G. If G is connected, then this
can be expressed at the vector field level byLV ω = 0 for all fieldsV which are induced
from the action. This formulation in terms of the Lie derivative allows one to apply Cartan’s
formula,LV = iV · d + d · iV .

Thus, if ω is G-invariant andξM is a field associated to the action of a 1-parameter
subgroup, theniξM

ω is a closed 1-form and at least locally there is an associated momentum
functionµξ with dµξ = iξM

ω. Note that ifH ∈ E(M)G, then{H, µξ } = VH (µξ ) = 0,
i.e.,µξ ∈ Z(H) is a constant of motion.

This formal version of Noether’s principle leads one to bundle together all suchµξ into
a single mapµ : M → g∗, whereg∗ denotes the dual of the Lie algebra, Lie(G), equipped
with the coadjoint representation.

Such a map is called a moment map if it isG-equivariant, and for everyξ ∈ g, the
coordinateξ ◦ µ = µξ is a Hamiltonian ofξM as above. In general such a map may not
exist, but in every example considered here its explicit definition will be obvious.

Since{H, µ} = 0 for every invariant HamiltonianH , it is suitable to useµ as a coordinate
whenever possible. In this way the canonical Poisson structure{ , }g∗ ong∗ will appear in
the Poisson structure, e.g., onM/G.

The structure{ , }g∗ is defined by the structure constants of the Lie algebrag. If ξ, η ∈ gare
regarded as linear functions, then{ξ, η} := [ξ, η]. By using Leibnitz’s rule, this definition
extends naturally to the symmetric algebra of polynomials and by density to the smooth
functionsE(g∗).

Equivalently, forf, h ∈ E(g∗) define{f, h}g∗(α) := α([df (α), dh(α)]), where df (α)

and dg(α) are regarded as elements ofg. In the example of Section 1, the brackets{lmn, lij }
represent the Poisson structure on(so∗

n).
All examples here involve cotangent structures on spaces of operators. In general, ifQ is

a manifold representing configuration space andM = T ∗Q is the associated phase space,
thenM comes equipped with its standard symplectic structureωstd: for v ∈ TαM, whereα
is a cotangent vector atq ∈ Q, defineθ ∈ E1(M) by θ(v) := α(π∗(v)). Hereπ denotes
the canonical projectionπ : M → Q, up to sign conventionωstd = dθ .

If q = (q1, . . . , qn) is a coordinate system inQ andp = (p1, . . . , pn) are the associated
coordinates in theπ -fibers, i.e., a 1-form is described byp1 dq1 + · · · + pn dqn, then
ωstd = ∑

dpj ∧ dqj .
In Sections 4 and 5, we carry out concrete calculations for cotangent bundles of vector

spaces which with one exception are Lie algebras. For such a real vector spaceV , its
cotangent bundle isV ⊕ V ∗ equipped with its standard structure. Since the individual
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factorsV ⊕ {0} and{0} ⊕ V ∗ are Lagrangian, it is enough to describe the mixed terms:
ω(v, w∗) = w∗(v). If G is a Lie group acting onV via a linear representation, then its
action onV ⊕ V ∗ is symplectic.

The examples considered here correspond to selected elementary quantum mechanical
models. The configuration spaceQ is, e.g., the space of symmetric, anti-Hermitian or
complex matrices. Thus the eigenvalues are real, imaginary or mixed, with the latter case
being regarded as a study of invariant dissipative systems (see [5]). The symplectic manifolds
M in question are the associated cotangent vector spaces and the symmetry group is in each
case an obvious compact group acting via its adjoint representation.

In all cases there exist invariant trace-pairings on the vector space in question. For
X, Y ∈ V = Σn, sun, gln(C) the pairing〈X, Y 〉 := Re(tr(XY)†), whereY† := Ȳ T is
non-degenerate. Thus the phase spacesM can be taken to beΣn × Σn, sun × sun and
gln × gln with the respective transported structuresω = Re(tr(dY ∧ dX†)). Here we use
the obvious conventions for matrix-valued differential forms.

TheG-action is then just the diagonal action by conjugation on pairs(X, Y ) of matrices.
In the case ofΣn, the groupG is SOn and otherwiseG is the unitary groupSUn.

In the former cases, the moment map is given byµ(X, Y ) = [Y, X] and in the case of
complex matrices by12([Y, X†] + [Y†, X]). Of coursesun × sun is a symplectic subspace
of gln × gln. So it is possible to derive results for the former by restricting from the latter.

It would seem likely that all of our considerations can be carried out for any compact
real algebra, for other representations and in certain non-linear contexts. It would be of
particular interest to discuss these matters in the indefinite case, i.e., for non-compact real
forms.

3. Symplectic reduction and the Poisson structure onM/GM/GM/G

We now turn to a description of the Poisson structure onN = M/G. Since we are willing
to restrict to the generic points where the orbit-dimension is constant, this can be given in
terms of a symplectic foliation.

In general, the rank of a Poisson structure{ , } at a pointx in a Poisson manifoldN is
defined to be the rank of the induced linear mapP{ , } : T ∗

x N → TxN .

Lemma 3.1. If { , } is of constant rank, thenIm(P{ , }) is an integrable subbundle of TN.

Proof. The image Im(P{ , }) consists of tangent vectors of the formVf (x) with f ∈ E(M).
Since{f, h} yields the field [Vf , Vh], the integrability is immediate. �

If L is a leaf of the induced foliationF of a constant rank Poisson structure, then{ , }L is
well defined by extending functionsf, h ∈ E(L), applying{ , } and restricting. Of course
this is carried out at the germ level. Since{ , }L is non-degenerate,F is called the associated
symplectic foliation.

It is convenient to describe the symplectic foliation ofM/G via the symplectic reduction
of M. Let us recall this procedure.
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Let (M, ω) be a symplectic manifold with a smooth actionG × M → M of a connected
Lie group of symplectic diffeomorphisms. Assume that there exists a moment mapµ :
M → g∗. Forx ∈ M, let α := µ(x) andFα be the fiberµ−1{α}. Let Gx andGα denote
the respective isotropy groups.

Direct application of the definitions yields the basic formula

dµ(x)(v)(ξ) = ω(x)(ξM, v)

for v ∈ TxM, ξ ∈ g andξM the associated field. In particular, Ker(dµ(x)) = (TxGx)⊥ω

and the notion of locally constant rank corresponds to locally constant orbit dimension.
Of courseFα may be singular, but here we always restrict to a possibly smaller (dense,

open) subset ofM where orbit-dimension is locally constant, e.g., whereµ is of con-
stant rank andFα is smooth. The formωα := i∗Fα

ω will usually have a certain degree of
degeneracy.

Lemma 3.2. The degeneracy(TxFα)⊥ωα is TxGαx.

Proof. As was noted above,(TxFα)⊥ω = TxGx. Thus,

(TxFα)⊥ωα = TxFα ∩ TxGx = TxGαx. �

In general, ifω is a closed 2-form on a manifoldN with TN⊥ω a constant rank bundle,
then it is integrable: forX, Y vector fields from this degeneracy andZ ∈ Vect(N) arbitrary,
a direct calculation of 0= dω(X, Y, Z) shows thatω([X, Y ], Z) = 0.

ThusTN⊥ω defines a foliationF . Furthermore, if the quotientN → N/F exists as a
differentiable manifold, thenω pushes down to a symplectic form. For this it is enough
to show thatLXω = 0 for all X in the degeneracy, but this is immediate from Cartan’s
formula.

In the above case, the degeneracy foliation is defined by the orbits inFα of the connected
componentG◦

α of the momentum isotropy. Since we always restrict to sets of points where
π : M → M/G exists as a differentiable manifold, we may assume that these orbits are
closed:Fα/G◦

α =: Ñα is the symplectic reduction of theµ-fiberFα.
If Fα1 andFα2 areµ-fibers over the same coadjoint orbitB, then there existsg ∈ G with

g(Fα1) = Fα2. This map is compatible with symplectic reduction. Furthermore, ifL :=
µ−1(B) is theG-invariant momentum level overB, thenπ(L) = π(Fα1) = π(Fα2). Up to
a quotient by a discrete group, this is just the reduced spaceÑα : π(L) =: Nα = Ñα/Γ ,
whereΓ = Gα/G◦

α. In fact these manifolds define the symplectic foliation onN := M/G

of the quotient Poisson structure.

Proposition 3.3. Assume that theG-action has locally constant orbit-dimension, that
the orbits are closed and thatπ : M → M/G =: N is a constant rank map onto a
smooth manifold so thatE(N) = E(M)G. Suppose that the coadjoint orbits in the im-
ageµ(M) are parameterized by a setP. ThenN = ∪α∈PNα is the symplectic foliation
of N.
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Proof. Since disjointG-invariant subsets ofM are mapped byπ onto disjoint subsets of
N , for α1 6= α2 different parameter values inP, it follows thatNα1 andNα2 are disjoint
submanifolds ofN .

Now, for x ∈ M with y := π(x), the image Im(P{ , }) ⊂ TyN is defined byπ∗({Vf (x) :
f ∈ E(M)G}). Recall that{f, µ} = 0 forf ∈ E(M)G, i.e.,Vf (x) ∈ TxFα for f ∈ E(M)G.

Furthermore, fork := codimGx = dimFα, there existf1, . . . , fk ∈ E(M)G with
(df1 ∧ · · · ∧ dfk)(x) 6= 0. In other words, the fieldsVf1, . . . , Vfk

form a basis ofTxFα.
Consequently, aty ∈ N the image ofP{ , } is Tyπ(Fα) = TyNα. �

4. Slice coordinates and computation of Poisson structures

For invariant Hamiltonian systems, the completely reduced phase space isN = M/G

equipped with the Poisson structure defined by the algebraE(M)G of invariant functions.
Under genericity assumptions, Proposition 3.3 gives an abstract description of the symplec-
tic foliation of this structure. For applications, it is important to determine coordinates in
which the Poisson structure can be explicitly computed.

For these purposes a (possibly thick) sliceS ⊂ M is defined to be a submanifold
with the property thatS is transversal toπ : M → M/G at its generic points, i.e.,
in the sense of Proposition 3.3, and thatGS = M. In all examples considered here,
the thicknessis controlled by a subgroupT < G: generically,Gs ∩ S = Ts. If the
action map defines a diffeomorphismG × S ∼= M, then we refer toS as an exact
slice.

From now on we will only consider selected examples. In this section, we carry out
calculations of the Poisson structures and in the following one we compute slice-density
functions.

4.1. Symmetric operators

In the case of the orthogonal groupG = SOn(R) acting diagonally by conjugation on
M = Σn × Σn, where the cotangent bundle structure onM is defined by the identification
Σn

∼= Σ∗
n of the second factor via the pairing〈X, Y 〉 = tr(XY), we chooseS := ∆n × Σn

with ∆n being the set of diagonal matrices in the first factor.
Restricting our attention to generic points, we assume that no two eigenvalues ofX

are equal. Thus we shrinkS to ∆+
n × Σn, whereq = diag(q1, . . . , qn) ∈ ∆+

n satisfies
q1 < · · · < qn. ThusS is an exact slice andM is identified withG × S by the action map
(g, s) → g(s).

Since the eigenvalue space is a factor ofS, the first goal is reached. The extended coor-
dinates are defined as follows: for(D, Y ) ∈ S, let l := l(D, Y ) be the coordinates of the
moment mapµ(D, Y ) = [Y, D] and definep = p(D, Y ) = diag(p1, . . . , pn) to be the
diagonal coordinates ofY .

Extend the coordinatesq, p andl to be invariant functions onM, e.g.,q(g(s)) := q(s)

for all g ∈ G. Regardg ∈ G as an orthogonal matrixO and let(q, p, l, O) be a global
coordinate system with values in various sets of matrices.
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If W is defined to be the differentialO−1 dO, then a straightforward calculation shows
that

ω = tr(dp ∧ dq) − tr(dl ∧ W) + tr(lW ∧ W).

We carry out the completely analogous calculation in the case of the unitary group below.
Hence, we omit it here.

The functions(q, p, l) are optimal coordinates on the complete reductionM/G. The
Poisson structure there splits with the pair(q, p) being canonical, i.e., the standard struc-
ture on R2n, commuting with l and l itself having the coadjoint Poisson structure
of son.

The latter point requires some discussion. In general, the moment mapµ : M → g∗

is a Poisson map in the sense that forf, h ∈ E(g∗)− {µ∗(f ), µ∗(h)}M = µ∗({f, h}g∗).
Here this is also true for the invariant mapl. This does not follow immediately from the
analogous property forµ, but is closely related. In any case, this shows that the commutation
relations forl are just given by pulling back the standard basis of linear functions ong∗

as was described in Section 1. Again the calculations are exactly the same as those in the
unitary cases below. Thus, we omit them.

4.2. Anti-Hermitian and general complex matrices

We shall identify the Lie algebrasun with the space of trace-free, anti-Hermitian matrices.
Since it is convenient to discuss this case at the same time as that for complex matrices,
in the latter situation we always restrict to the trace-free case, i.e.,M := sln(C) × sln(C).
Sincesun × sun is an SUn-invariant symplectic subspace ofM, all results will follow
by restriction. Thus we begin withM as above and the diagonal action ofG = SUn by
conjugation.

Let bn be the subalgebra of upper-triangular matrices insln(C) and provisionally define
S := bn × sln. Of course, for every elementX ∈ sln there existsg ∈ G = SUn such that
g(X) ∈ bn. However,g is not unique, i.e., this is the case of a thick slice.

Let T be the subgroup of diagonal matrices inG. It follows thatS is T -invariant, and if
s ∈ S is generic andg(s) ∈ S, theng ∈ T .

For the purposes of computing the Poisson structure onM/G it is appropriate to choose
an exact slice. For this and later discussions, letEij be the matrix(δmn

ij ) and gi be the
one-dimensional complex subspace generated byEi(i+1). Finally, letR := ⊕gi .

Since theG-action is defined by conjugation, the (finite) center ofG acts trivially and
we may replace it byPSUn. We do this (without changing the notation) and therefore may
assume thatT acts faithfully onR.

Now we replaceS by a shrunken version to obtain an exact slice: in the second factor of
bn × sln we replaceR by R+ := {v = (v1, . . . , vn−1) ∈ R : vi > 0∀i}. SinceTR+ = R,
it still follows thatGS= M. Furthermore, fors ∈ S generic,Gs∩ S = {s}.

Note also thatSsun := S ∩ (sun × sun) is an exact slice insun × sun. Concretely,
Ssun = q × su+

n , whereq is the set of (trace-free, imaginary) diagonal matrices andA =
(Aij ) ∈ su+

n wheneverAi(i+1) > 0 (resp.A(i+1)i < 0), i = 1, . . . , n − 1.
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Returning to the case ofM = sln(C) × sln(C), we choose functions onS as follows:
Z = (Zij )i≤j (resp.P = (Pij )i≤j ) are the standard complex linear coordinates of the
upper-triangular parts of the first (resp. second) factors. Of coursePi(i+1) > 0 for i =
1, . . . , n − 1. Let l := µ|S be the restriction of the moment map.

Now extend these toG-invariant functions onM by the canonical procedure, i.e., for
f ∈ E(S), extend it toM by f (g(s)) := f (s).

Finally, regardg ∈ G as a unitary matrixU . Forx = g(s) defineU(x) to be the matrix
of g.

Let us now compute the standard symplectic formω = Re(tr(dY ∧ dX†)) using these
functions. For this it is convenient to regardω = dθ , whereθ := Re(tr(Y dX†)). For
temporary use letV denote the standard matrix coordinate of the second factor ofS regarded
in the usual way as an invariant function onM. Define dU to be the matrix of 1-forms dUij

andW := U† dU . Note thatW = −W† and that dW = −W ∧ W .
The conversion ofω is a simple matter:

θ = Re(tr(UVU† d(UZ†U†))) = Re(tr(V (dZ† + [Z†, W†])))

= Re(tr(V dZ†)) − tr(lW).

Therefore,

ω = Re(tr(dV ∧ dZ†)) − tr(dl ∧ W) + tr(lW ∧ W).

Due to the upper-triangular nature ofZ, the lower-triangular part of dV is not involved.
Thus the first term in the description ofω can be replaced by Re(tr(dP ∧ dZ†)) and can
be expanded as

1

2

∑
i≤j

(dPij ∧ dZ̄ij + dP̄ij ∧ dZij ).

SincePi(i+1) is real-valued, there are terms of the form dPi(i+1) ∧ d Re(Zi(i+1)). Thus we
modify Z by replacingZi(i+1) by Re(Zi(i+1)), i = 1, . . . , (n − 1).

It also follows that(Z, P, l, U) is now a global coordinatization of an appropriately
defined dense open set inM. Using the obvious convention, we write

ω = Re(tr(dP ∧ dZ†)) − tr(dl ∧ W) + tr(lW ∧ W).

By restriction, we have global coordinates(q, p, l, U) on sun × sun, whereq andp are
diagonal matrices in the first and second factors ofSsun andl is the restriction of the moment
map. Of course these are extended toMsun as invariant functions. Here it should be noted
that l only takes on values int⊥ = {A ∈ sun : diag(A) = 0}. Furthermore, we have the
relations Im(q−1

i li(i+1)) = 0.
We regard(Z, P, l) as coordinates on the completely reduced spaceM/G. Due to the

particularly simple form ofω, it is an easy job to describe the Poisson structure in these
variables. The results can be summarized as follows.



A. Huckleberry et al. / Journal of Geometry and Physics 37 (2001) 156–168 165

Proposition 4.1. The mapl : M → g∗ is a Poisson morphism, i.e., for f and h functions of
l alone,

{f, h}(l) = tr

(
l

[(
∂f

∂l

)
,

(
∂h

∂l

)]T
)

.

Remark. Although we have discussed this result in the context of complex matrices, it
follows by restriction forsun × sun and via an analogous proof forΣn × Σn.

Before carrying out the calculation, let us clarify the matrix notation. As usual, regardl

as a complex matrix valued map with values insun, i.e.,l† = −l, and let dl = (dlij ) be the
matrix ofC-valued 1-forms.

With the slice restrictions onZ andP , the entries of the matrices dZ, dZ̄, dP, dP̄ , dl

andW form a basis of the complex valued 1-forms at each point ofM. We consider the
dual basis of fields, e.g.,(∂/∂l) which satisfies(∂/∂lji ) = −(∂/∂l̄ij ). By abuse of nota-

tion, let (∂/∂W) denote the fields dual toW : Wij (∂/∂Wkl) = δ
ij
kl. Of course(∂/∂W)† =

−(∂/∂W).
For the calculation of the Poisson brackets of functions ofl alone, it is only necessary to

consider the pieces of fields which involve(∂/∂l) and(∂/∂W).
For a real-valued fieldZ, it follows that

Z = · · · + tr

(
Zl

(
∂

∂l

)T
)

+ tr

(
ZW

(
∂

∂W

)T
)

,

whereZl andZW are also matrices insun.
We now compute the Hamiltonian fieldVf of a real-valued functionf = f (l). For Z

anyR-field,

ω(Vf , Z) = −tr(dl ∧ W − lW ∧ W)(A, B),

whereA = tr(V l
f (∂/∂l)T) + tr(V W

f (∂/∂W)T) andB = tr(Zl(∂/∂l)T) + tr(ZW(∂/∂W)T).

Direct calculation yieldsω(Vf , Z) = tr(CZW) + tr(DZl ), whereC = −V l
f + [l, V W

f ] and

D = V W
f .

Now df (Z) = tr(Zl(∂f/∂l)T), and therefore the Hamiltonian condition df (Z) =
ω(Vf , Z) yieldsV W

f = (∂f/∂l)T andC = 0, i.e.,V l
f = [l, (∂f/∂l)T].

In summary

Vf = tr

([
l,

(
∂f

∂l

)T
](

∂

∂l

)T

+
(

∂f

∂l

)T (
∂

∂W

)T
)

.

The formula forω(Vf , Vh) in Proposition 4.1 follows by direct evaluation.

5. Slice densities

Our goal here is to compute the measure onS (resp.M/G) which is naturally related to
the Liouville measure dλM associated to the volume formωM = ωn onM.
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ForS an exact or thick slice andωS its linear volume form, theslice densityρ : S → R
≥0

is uniquely defined by theG-invariant functions: for every compactly supported function
f ∈ E0(M)G,∫

M

f ωM =
∫

S

fρωS.

If, e.g.,p dλM is aG-invariant probability distribution onM, e.g., exp(−‖ · ‖2) dλM , then
the appropriate density onS is pρ dλS . In this way, it is a simple matter to compute the
desired image measure via the linear projectionS → t+ to the eigenvalues.

In order to give a unified description of our calculations it is convenient to introduce
some notation. In the case ofM = Σn × Σn, whereS = ∆+

n × Σn, let (q, p, l) be the
coordinates defined above.

In the cases of complex matricesM = sln(C) × sln(C) and the restriction toMsun =
sun×sun, it is prudent to use thick slices. For complex matrices, we chooseS := b+n ×sln(C)

andSsun = i∆+
n × sun its intersection withMsun .

In the former case, for(X, Y ) ∈ S, let q denote the linear coordinates ofX, p the linear
coordinates of the upper-triangular part ofY , and l the non-diagonal coordinates of the
moment map. In the latter case,q represents the linear coordinates of the first factor,p the
diagonal of second andl the moment map. These are in fact just the restricted coordinates
from the space of complex matrices.

Proposition 5.1. In the coordinates(q, p, l) the canonical slice measure is given by
ρ dλS = dq dp dl.

This interesting fact, i.e., that in non-linear momentum-coordinates the canonical measure
is Euclidean, is not proved directly. Instead, we directly computeρ. This is of course what
is needed for the calculation of eigenvalue densities. For example, forH the invariant
norm function and given density exp(−1

2H) dλM , we obtain, respectively, the Gaußian
orthogonal, Gaußian unitary and Ginibre ensembles.

5.1. Orthogonal ensembles

In this caseS is an exact slice, i.e., the action mapα : G × S → M, (g, s) 7→ g(s), is
a diffeomorphism. LetωG be the normalized bi-invariant volume form on the orthogonal
groupG = SOn with

∫
G
ωG = 1 andωS be the standard Euclidean volume form onS

defined by the linear coordinates.
The Jacobianρ is defined onG × S by ρωG ∧ ωS = α∗ωM . Since all of the differential

forms which are involved areG-invariant, it follows thatρ is likewiseG-invariant, i.e.,
ρ = ρ(s) is defined on the sliceS. Furthermore, forf ∈ E0(M)G, it follows from Fubini’s
Theorem that∫

M

f ωM =
∫

G×S

ρα∗(f )ωG ∧ ωS =
∫

S

ρf ωS.

Thusρ is the desired density.
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We computeρ along{e} × S in G × S. For this letF0 be the usual orthonormal frame
for TeG = son = {A : A + AT = 0}, i.e.,F0 = 〈Jij : i < j〉, whereJij = Eji − Eij . Recall
thatEij = (δmn

ij ) and note that we do not have explicitly normalized lengths.
The linear splittingΣn × Σn = son × S is convenient for computingρ. It is enough to

compute the image frameα∗(F0) at a point(0, s), and thenρ is just the determinant of its
projection Pr(α∗(F0)) on the first factorson.

Since the action is defined by conjugation of matrices, it follows that Pr(α∗(Jij )) =
[Jij , q], whereq = (q1, . . . , qn) is the diagonal in the first factor ofS. Thus Pr(α∗(Jij )) =
(qj − qi)Jij , and it follows thatρ(s) = ∏

i<j (qj − qi). Using the standard norm function
H onM, this yields as an image measure ont+ the Gaußian orthogonal ensemble.

Now the moment map onS is given byl(q, Y ) = [Y, q]. Therefore, it follows immediately
thatρ(s) dλS = dq dp dl as stated in Proposition 5.1.

5.2. Fiber integration

The computation of slice densities in the remaining cases is technically slightly different
from the above, because the mapα : G×S → M is no longer a diffeomorphism but rather
aT -principal bundle.

In this situationα : G × S → M is defined as the quotient by the diagonalT -action
t (g, s) 7→ (gt−1, t (s)). Let T be the associated invariant frame field along the fibers.

As in the case of an exact slice, letωG be the normalized invariant volume form onG

andωS the standard Euclidean volume form onS. Define the functionρ by the identity

ρiT (ωG ∧ ωS) = α∗ωM.

HereiT denotes contraction with the frameT . For the same reason as above, it follows that
ρ = ρ(s) is G-invariant.

Applying fiber integration forf ∈ EG
0 ,∫

G×S

α∗(f )ρωG ∧ ωS =
∫

M

f

(∫
T

t∗(ρiT (ωG ∧ ωS) dt

)
=
∫

M

f ωM,

and applying Fubini’s Theorem as in the previous case,∫
G×S

α∗(f )ρωG ∧ ωS =
∫

S

fρωS.

Thusρ is the desired slice density.

5.3. Unitary ensembles

The computation of the slice densityρ in the case of the thick sliceS = i∆+
n × sun in the

unitary case goes essentially the same as that for the orthogonal group. Here, however, we
must replace the full orthogonal frame onG by a frameF⊥ for t⊥. For this letJij = Eji −Eij ,
Kij = √−1(Eji + Eij ) andF⊥ := 〈Jij , Kij ; i < j〉.
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At s ∈ S, we have the induced frameα∗(F⊥) defined by the action. Using the local
splitting M = t⊥ × S alongS, we must only compute the determinant of the projection
Pr(α∗(F⊥)) ontot⊥.

Since Pr(α∗(Jij )) = [Jij , q] = (qj − qi)Kij and Pr(α∗(Kij )) = [Kij , q] = (qj − qi)Jij ,
whereq = diag(iq1, . . . , iqn), it immediately follows thatρ(s) = ∏

i<j (qj − qi)
2.

This yields the Gaußian unitary ensemble ont+. Furthermore, sinceµ(q, Y ) = [Y, q],
changing to momentum-coordinates, it again follows thatρ(s) dλS = dq dp dl as required
by Proposition 5.1.

5.4. Complex matrices

Conceptually speaking, the caseM = sln(C) × sln(C) of complex matrices is handled
in exactly the same way as the others. The only technical difference is that the projected
frame is in the triangular form.

For the computations, letn be the subalgebra of strictly lower-triangular complex matri-
ces. The thick slice isb+ × sln. Thus, we again have the natural projection onton alongS,
and we must compute the determinant of Pr(α∗F⊥)), whereF⊥ is defined as above.

For this it is convenient to let

〈E21, E32, . . . , E(n−1)n; E31, . . . , En(n−2); . . . ; En1〉
be the ordered basis forn.

Let n1 := [n, n], n2 = [n1, n], etc., and define the complementsck, k = 1, . . . , n − 1,
by n(k−1) = nk ⊕ ck. Of course we use〈Ek1, . . . , En(n−k+1)〉 as a basis forck.

Let λ = diag(λ1, . . . , λn) andZ = (Zij )i<j be the strictly upper-triangular matrix with
coordinatesZij .

Direct computation shows that

Pr(α∗(Jij )) = Pr([Jij , λ + Z]) = (λj − λi)Eji + terms in n(j−i+1),

and Pr(α∗(Kij )) = √−1 Pr(α∗(Jij )). Thus, the projected frame int⊥ is (F, iF) whereF
is in upper-triangular form in the above basis.

Since the diagonal entries ofF consist of all possible differencesλj − λi , it follows that
the determinant of(F, iF) over the real numbers is

∏
i<j |λj − λi |2 = ρ(s).

In this case, the calculation of the Jacobian of the change of variables to momentum-coor-
dinates requires a bit of care but is nevertheless computed in a straightforward way (see
[5]). Again this yieldsρ dλS = dq dp dl as claimed in Proposition 5.1. Analogous to the
orthogonal and unitary cases, this slice density leads to Ginibre’s distribution of eigenvalues.
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